Individual analysis of changes in a single reminiscence session from nostalgic music videos using text mining

نویسندگان

چکیده

Background This study conducts an intervention using nostalgic music videos and reminiscence, which provide stimulation to the emotions of a person with dementia. found occurrence positive emotions. In AAIC, we provided presentation on this its analysis text mining (Urabe et al., 2020, 2021). As proceeded intervention, that or words led dementia mention stories from memory even after only one session. The purpose is clarify individual changes important in narrative reminiscence session Alzheimer’s disease mining. Method participant was female aged over 80 years old (MMSE: eight points) psychiatric hospital Japan due behavioral psychological symptoms We intervened two times she liked listened her memories youth. recorded analyzed Moreover, divided time points where noted single compared these changes. Result After 10 min 23 sec start first session, change content (Point A).In second appeared 4 53 sec. B) co-occurrence network, number connected increased clearly Point A B. sentences 61 (before A) 159 (after A), paragraphs 39 68 33 269 B), 22 164 B). Conclusion Nostalgic for persons hold potential increase utterances intervention.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a System for Trend Analysis of Users in Website Surfing in Iran Using Data Mining and Text Mining Algorithms

Background and Aim: As of the entrance of web surfing to the lifestyle of a vast majority of people in the society and the need for a more accurate social and cultural policy making in the field, authors intended to analyze the behavior of the society users in viewing different websites so as to help politicians and practitioners. Methods: Design science research method is used in this research...

متن کامل

Using Text Mining Techniques for Classical Music Scores Analysis

Music Classification is a particular area of Computational Musicology that provides valuable insights about the evolving of composition patterns and assists in catalogue generation. The proposed work detaches from former works by classifying music based on music score information. Text Mining techniques support music score processing while Classification techniques are used in the construction ...

متن کامل

a swot analysis of the english program of a bilingual school in iran

با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...

15 صفحه اول

Analysis of Videos using Tile Mining

We investigate how mining top-k largest tiles in a data stream under the sliding window model can be useful for (real-time) analysis of videos and, in particular, for tracking. We first explain how a tracking problem can be cast into a stream pattern mining problem. We then show some preliminary results on tracking in the particular context where both the objects and the camera are moving and w...

متن کامل

Stylistic Analysis of a Poetic Text: A Case from Persian

Poetic analysis involves the explication of a poem by focusing on the process of semiosis in it. Through semiosis linguistic meaning is transformed into stylistic meaning. An examination of semiosis brings us to look at the hypersemanticized poetic structures which are none other than the style features of a poem. Since style functions in a literary text by conveying meanings other than literal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Alzheimers & Dementia

سال: 2023

ISSN: ['1552-5260', '1552-5279']

DOI: https://doi.org/10.1002/alz.065037